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In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a 
description of the continuous-variable entanglement for a system consisting of two uncoupled harmonic oscillators 
interacting with a thermal environment. Using Peres-Simon necessary and sufficient criterion for separability of two-mode 
Gaussian states, we show that for some values of diffusion coefficient, dissipation constant and temperature of the 
environment, the state keeps for all times its initial type: separable or entangled. In other cases, entanglement generation, 
entanglement sudden death or a periodic collapse and revival of entanglement take place.  
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1. Introduction 
 
The physics of quantum entangled states, an 

interdisciplinary field of research involving quantum 
optics, physics of quantum information and foundations of 
quantum theory, has been intensively exploited over the 
last years in connection with quantum information 
processing, quantum communication and quantum 
computing. It was shown that the use of entangled states 
opens new horizons in such practical fields like 
cryptography, computing, information transmission, 
quantum imaging and precision measurements. Essential 
progress has also been achieved in the area of photon 
squeezing, generation of nonclassical states, including 
Schrödinger cats, trapped ions, Bose–Einstein 
condensates, cavity quantum electrodynamics, Casimir 
effect etc.  

In recent years there is an increasing interest in using 
continuous variable (CV) systems in applications of 
quantum information processing, communication and 
computation [1], like experimental observation of CV 
quantum teleportation [2] using a two-mode squeezed 
state, based on a CV theoretical description [3], the 
demonstration of quantum key distribution [4] for 
continuous optical fields, and the successful definition of 
the notion of universal quantum computation over CV [1]. 

The realization of quantum information processing 
tasks depends on the generation and manipulation of 
nonclassical states of CV systems. A full characterization 
of the nonclassical properties of entangled states of CV 
systems exists, at present, only for the class of Gaussian 
states. In this special case there exist necessary and 
sufficient criteria of entanglement [5,6] and quantitative 
entanglement measures [7,8]. In quantum information 
theory of CV systems, Gaussian states play a key role 
since they can be easily created and controlled 
experimentally. 

 

Two-mode Gaussian states play an important role in 
quantum information processing tasks in CV systems, like 
quantum teleportation [1,3], quantum cryptography [4] and 
quantum entanglement swapping [9]. Two-mode Gaussian 
entanglement has been generated in various physical 
situations like optical parametric amplifiers, nonlinear 
parametric down conversion, Kerr nonlinearity in an 
optical fiber or cavities, two-mode cavity quantum 
electrodynamics. 

Quantum entanglement represents a key resource in 
quantum information processing. Implementation of 
quantum communication and computation encounters the 
difficulty that any realistic quantum system cannot be 
isolated and it always has to interact with its environment. 
Quantum coherence and entanglement of quantum systems 
are inevitably influenced during their interaction with the 
external environment. As a result of the irreversible and 
uncontrollable phenomenon of quantum decoherence, the 
purity and entanglement of quantum states are in most 
cases degraded. However, it was recently shown that 
entanglement can be created or enhanced during the 
interaction with the external environment, like, for 
example, in the case of a system of two non-interacting 
qubits coupled to a common environment [10]. At the 
same time there exist some special entangled states that 
are not altered by the interaction with the environment, 
called decoherence-free states that could be efficient in 
quantum information processing. Practically, compared 
with the discrete variable entangled states, the CV 
entangled states may be more efficient because they are 
less affected by decoherence. 

Due to the unavoidable interaction with the 
environment, any pure quantum state evolves into a mixed 
state and to describe realistically CV quantum information 
processes it is necessary to take decoherence and 
dissipation into consideration. Decoherence and dynamics 
of quantum entanglement in CV open systems have been 
intensively studied in the last years [11-31]. The 
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Markovian time evolution of quantum correlations of 
entangled two-mode CV states has been examined in 
single-reservoir [10,16] and two-reservoir models 
[6,15,17], representing noisy correlated or uncorrelated 
Markovian quantum channels. 

When two systems are immersed in an environment, 
then, besides and at the same time with the quantum 
decoherence phenomenon, the environment can also 
generate a quantum entanglement of the two systems 
[19,32]. In certain circumstances, the environment 
enhances the entanglement and in others it suppresses the 
entanglement and the state describing the two systems 
becomes separable. The structure of the environment may 
be such that not only the two systems become entangled, 
but also such that the entanglement is maintained for a 
definite time or a certain amount of entanglement survives 
in the asymptotic long-time regime. The effects of 
environment may include collapses and revivals of 
entanglement [33]. 

In the case of two modes of an electromagnetic field 
embedded in a thermal environment, in Ref. [16] it was 
derived a condition which states that if the state of the two 
modes is initially sufficiently squeezed, it will always 
remain entangled independent of the strength of the 
interaction with the environment. Studying the dynamics 
of two-mode squeezed states in an extended quantum 
Brownian motion model, Hörhammer et al. [34] showed 
that below a critical bath temperature, two-mode 
entanglement is preserved even in the steady state. Paz and 
Roncaglia [35] also analyzed the entanglement properties 
of two oscillators in a common environment by using the 
exact master equation for quantum Brownian motion and 
showed that the entanglement can undergo three phases: 
sudden death, sudden death and revival, and no sudden 
death. 

In this paper we present the results obtained, in the 
framework of the theory of open systems based on 
completely positive quantum dynamical semigroups, on 
the dynamics of the CV entanglement of two modes (two 
identical harmonic oscillators) coupled to a common 
thermal environment [36,37,38]. We are interested in 
discussing the correlation effect of the environment, 
therefore we assume that the two systems are uncoupled, 
i.e. they do not interact directly. The initial state of the 
subsystem is taken of Gaussian form and the evolution 
under the quantum dynamical semigroup assures the 
preservation in time of the Gaussian form of the state. 

The underlying approach assumes weak coupling 
between the system and the environment and neglects 
short-time correlations between the system and 
environment. This approach has been widely and 
successfully used in the field of quantum optics, where the 
characteristic time scales of the environmental correlations 
is much shorter compared to the internal system dynamics. 

We show that both modes interact indirectly via the 
coupling to the environment. Therefore, new quantum 
correlations may emerge between the two modes and this 
model provides an example of environment-induced 
quantum two-mode entanglement. 

The paper is organized as follows. In Sec. 2 we write 
the Markovian master equation in the Heisenberg 
representation for two uncoupled harmonic oscillators 
interacting with a general environment and the evolution 
equation for the covariance matrix. For this equation we 
give its general solution, i.e. we derive the variances and 
covariances of coordinates and momenta corresponding to 
a generic two-mode Gaussian state. In particular we derive 
the asymptotic values of the elements of the covariance 
matrix. By using the Peres-Simon necessary and sufficient 
condition for separability of two-mode Gaussian states 
[5,39], we investigate in Sec. 3 the dynamics of 
entanglement for the considered subsystem. In particular, 
with the help of the asymptotic covariance matrix, we 
determine the behaviour of the entanglement in the limit of 
long times. We show that for certain values of the 
environment temperature, the initial state evolves 
asymptotically to an equilibrium state which is entangled, 
while for other values of the temperaturet, the 
entanglement is suppressed and the asymptotic state is 
separable. The existence of the quantum correlations 
between the two systems in the asymptotic long-time 
regime is the result of the competition between 
entanglement and decoherence. We analyze also the time 
evolution of the logarithmic negativity, which 
characterizes the degree of entanglement of the quantum 
state. This entanglement monotone of logarithmic 
negativity is conveniently computable for general 
Gaussian states, and it provides a proper quantification of 
entanglement in particular for two-mode Gaussian states. 
A summary is given in Sec. 4. 

 
 
2. Equations of motion for two harmonic  
     oscillators 
 
We study the dynamics of the subsystem composed of 

two identical non-interacting oscillators in weak 
interaction with a general environment. In the axiomatic 
formalism based on completely positive quantum 
dynamical semigroups, the irreversible time evolution of 
an open system is described by the following general 
quantum Markovian master equation for an operator A in 
the Heisenberg representation († denotes Hermitian 
conjugation) [40,41]: 
 

,  

+            (1)                    
      

Here, H denotes the Hamiltonian of the open system 

and the operators   defined on the Hilbert space of H, 
represent the interaction of the open system with the 
environment. 

We are interested in the set of Gaussian states, 
therefore we introduce such quantum dynamical 
semigroups that preserve this set during time evolution of 
the system and in this case our model represents a 
Gaussian noise channel. Consequently H is taken to be a 
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polynomial of second degree in the coordinates x,y and 

momenta  of the two quantum oscillators and   
are taken polynomials of first degree in these canonical 
observables. Then in the linear space spanned by the 
coordinates and momenta there exist only four linearly 
independent operators  [42]:  
 

      (2)                                     
 
where  are complex coefficients. The 
Hamiltonian H of the two uncoupled identical harmonic 
oscillators of mass m and frequency ω is given by  
 

H =       (3)                                                                             
 

The fact that the evolution is given by a dynamical 
semigroup implies the positivity of the matrix formed by 
the scalar products of the four vectors  
whose entries are the components , 
respectively. This matrix can be conveniently written as (T 
denotes the transposed matrix) 

 

                 ,                       (4)                                                                    
                                                                                   

in terms of 2x2 matrices 
 

, (5)                                 
 

    (6)                               
 
and 

           (7)                                                    
 
where all coefficients ... and λ are real 
quantities (we put from now on = 1). It follows that the 
principal minors of the matrix (4) are positive or zero. 
From the Cauchy-Schwarz inequality the following 
relations hold for the coefficients introduced in Eqs.               
(5) - (7): 
  

 
 

       (8)                     
 

  
 

The decomposition (4) has a direct physical 
interpretation: the elements containing the diagonal 

contributions and represent diffusion and dissipation 
coefficients corresponding to the first, respectively the 
second, system in absence of the other, while the elements 
in represent environment generated couplings between 
the two oscillators, taken initially independent. 
A two-mode Gaussian state is entirely specified by its 
covariance matrix, which is a real, symmetric and positive 
4x4 bimodal matrix with the following block structure: 
 

              σ(t)                                   (9)                    
 

where A, B and C are 2x2 Hermitian matrices. Their 
entries are correlations of the canonical operators x, y, 

; A and B denote the symmetric covariance matrices 
for the individual reduced one-mode states, 
  

    A = B =   (10)        
 
while the matrix  
 

C =                           (11) 
              
contains the cross-correlations between modes. 

We can transform the problem of solving the master 
equation for the operators in Heisenberg representation 
into a problem of solving first-order in time, coupled linear 
differential equations for the covariance matrix elements. 
Namely, from Eq. (1) we obtain the following system of 
equations for the quantum correlations of the canonical 
observables [42]: 
  

 + 2D ,     (12)                     
 
where  
 

,      ,      (13)                    
 

D =  =     
 

= ,     (14) 
 
The time-dependent solution of Eq. (12) is given by [42] 

 
 + ,    (15)                    

 
where the matrix M(t)=exp(Yt) has to fulfill the condition 

= 0. In order that this limit exists, Y must only 
have eigenvalues with negative real parts. The values at 
infinity are obtained from the equation 
 

2D.                    (16)                    
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3. Dynamics of two-mode continuous variable  
    entanglement 
 
A well-known sufficient condition for inseparability is 

the so-called Peres-Horodecki criterion [39,43], which is 
based on the observation that the non-completely positive 
nature of the partial transposition operation of the density 
matrix for a bipartite system (this means transposition with 
respect to degrees of freedom of one subsystem only) may 
turn an inseparable state into a nonphysical state. The 
signature of this non-physicality, and thus of quantum 
entanglement, is the appearance of a negative eigenvalue 
in the eigenspectrum of the partially transposed density 
matrix of a bipartite system. The characterization of the 
separability of CV states using second-order moments of 
quadrature operators was given in Refs. [5,6]. For 
Gaussian states, whose statistical properties are fully 
characterized by just second-order moments, this criterion 
was proven to be necessary and sufficient: an Gaussian 
CV state is separable if and only if the partial transpose of 
its density matrix is non-negative [positive partial 
transpose (PPT) criterion]. 

The 4x4 covariance matrix (9) (where all first 
moments have been set to zero by means of local unitary 
operations which do not affect the entanglement) contains 
four local symplectic invariants in form of the 
determinants of the block matrices A, B, C and covariance 
matrix  Based on the above invariants Simon [5] derived 
a PPT criterion for bipartite Gaussian CV states: the 
necessary and sufficient criterion for separability is 
S(t) 0, where  
 

S(t) det A det B +  
 

  Tr[AJCJBJ J] -  (det A + det B)  (17)                    
 
and J is the 2x2 symplectic matrix 
 

.                                (18)                                                                            
 

This is also a necessary separability criterion for non-
Gaussian states. For a Gaussian two-mode state the partial 
transpose implies a mirror reflection in one of the two 
momenta operators and this leads to a change of the signs 
in those elements of the covariance matrix, which connect 
the momentum of one mode to the coordinate of the other 
mode. 

The elements of the covariance matrix depend on Y 
and D and can be calculated from Eqs. (15), (16). Solving 
for the time evolution of the covariance matrix elements, 
we can obtain the entanglement dynamics through the 
computation of the Simon criterion or by calculating 
logarithmic negativity, as will be shown in the following. 
Since the two oscillators are identical, it is natural to 
consider environments for which the two diagonal 
submatrices in Eq. (4) are equal,  and the matrix 

is symmetric, so that in the following we take 

,  
Then both unimodal covariance matrices are equal, A=B, 
and the entanglement matrix C is symmetric. 
 
 

3.1 Time evolution of entanglement 
 
It is interesting that the general theory of open 

quantum systems allows couplings via the environment 
between uncoupled oscillators. According to the 
definitions of the environment parameters, the diffusion 
coefficients can take non-zero values and therefore can 
simulate an interaction between the uncoupled oscillators. 
Consequently, the cross-correlations between modes can 
have non-zero values. In this case the Gaussian states with 
det C 0 are separable states, but for det C < 0 it may be 
possible that the states are entangled. 

In order to describe the dynamics of entanglement, we 
use the PPT criterion [5,39] according to which a state is 
entangled if and only if the operation of partial 
transposition does not preserve its positivity. Concretely, 
we have to analyze the time evolution of the Simon 
function S(t) (17). We consider two cases, according to the 
type of the initial Gaussian state: separable or entangled. 
For a thermal environment characterized by the 
temperature T, we consider such environment diffusion 
coefficients, for which 

 

 ,  
 

                (19)                     
                            

This corresponds to the case when the asymptotic 
state is a Gibbs state [41]. 

1) To illustrate a possible generation of the 
entanglement, we analyzed in Refs. [36,37,38] the 
dependence of function S(t) on time t and temperature T 
for a separable initial Gaussian state (initial unimodal 
squeezed state). We obtained that, according to Peres-
Simon criterion, for relatively small values of the 
temperature T, the initial separable state becomes 
entangled immediately after the initial moment of time. 
For relatively large values of T, S(t) becomes strictly 
positive and the state remains separable for all times. 

In the case of a generated entanglement we notice 
three situations: a) the entanglement is created only for a 
short time, then it disappears and the state becomes again 
separable; b) there exist repeated collapse and revival of 
entanglement; c) entanglement may persist forever, 
including the asymptotic final state. These situations 
depend on the environment temperature. The entanglement 
of the two modes can be generated from an initial 
separable state during the interaction with the environment 
only for certain values of temperature T and dissipation 
constant λ. 

2) The evolution of an entangled initial state is also 
described in Refs. [36,37,38], where we analyzed the 
dependence of function S(t) on time t and temperature T. 
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We observed that for relatively large values of temperature 
T, at some finite moment of time, S(t) takes non-negative 
values and, therefore, the state becomes separable. This is 
the so-called phenomenon of entanglement sudden death. 
This phenomenon is in contrast to the loss of quantum 
coherence, which is usually gradual [29,44]. Depending on 
the values of temperature, it is also possible to have a 
repeated collapse and revival of the entanglement. For 
relatively small values of T, the initial entangled state 
remains entangled for all times. 

 
3.2 Asymptotic entanglement 
 
On general grounds, one expects that the effects of 

decoherence, counteracting entanglement production, is 
dominant in the long-time regime, so that no quantum 
correlations (entanglement) is expected to be left at 
infinity. Nevertheless, we have seen previously that there 
are situations in which the environment allows the 
presence of entangled asymptotic equilibrium states.  From 
Eq. (16) we calculate the elements of the asymptotic 
entanglement matrix C( ) and with the chosen 
coefficients (19), the Simon expression (17) takes the 
following form in the limit of large times:  
 

S( ) =   +  
 

 .                            (20)                                          
                                                            

For environments characterized by such coefficients 
that the expression S( ) (20) is strictly negative, the 
asymptotic final state is entangled. In particular, for  = 
0 we obtain that S( ) < 0, i.e. the asymptotic final state is 
entangled, for the following range of values of the mixed 

diffusion coefficient : 
 

 - 1 <  <  + 1.    (21)                                                                           
 

We remind that, according to inequalities (8), the 
coefficients have to fulfill also the constraint   
 

 .                    (22) 
 

If the coefficients do not fulfil the double inequality 
(21), then S( ) 0 and the asymptotic state of the 
considered system is separable. 

 
3.3 Logarithmic negativity 
 
Logarithmic negativity quantifies the degree of 

violation of PPT criterion for separability, i.e. how much 
the partial transposition of the density matrix fails to be 
positive and it is based on negative eigenvalues of the 
partial transpose of the subsystem density matrix. For a 
Gaussian density operator, the negativity is completely 

defined by the symplectic spectrum of the partial transpose 
of the covariance matrix. In our model the logarithmic 
negativity is calculated as 
 

= - (4 [ (det A + det B) - det C 
 

- .  (23) 
 

It determines the strength of entanglement for > 
0 and, if < 0, then the state is separable. In Refs. 
[36,37,38,44,45,47] we described the dependence of the 
logarithmic negativity  on time, diffusion coefficient 

 and temperature T for the two types of the initial 
Gaussian state, separable or entangled, previously 
considered when we analyzed the time evolution of the 
Simon function S(t). As expected, the logarithmic 
negativity has a behaviour similar to that one of the Simon 
function in what concerns the characteristics of the state of 
being separable or entangled. Depending on the values of 
the mixed diffusion coefficient and temperature, the initial 
state can preserve for all times its initial property - 
separable or entangled, and we can also notice the 
generation of entanglement when the logarithmic 
negativity   becomes strictly positive, or the collapse 
of entanglement  (entanglement sudden death) at those 
finite moments of time when the logarithmic negativity 

, strictly positive initially, reaches zero value. One 
can also observe a repeated collapse and revival of the 
entanglement. The asymptotic logarithmic negativity has 
the form 
 

= - [ | coth | ].   (24)                    
 

It depends only on the mixed diffusion coefficient, 
dissipation constant and temperature, and does not depend 
on parameters of the initial Gaussian state. 

 
4. Summary  
 
In the framework of the theory of open quantum 

systems based on completely positive quantum dynamical 
semigroups, we investigated the Markovian dynamics of 
the quantum entanglement for a subsystem composed of 
two noninteracting modes embedded in a common thermal 
environment. By using the Peres-Simon necessary and 
sufficient condition for separability of two-mode Gaussian 
states, we have described the generation and evolution of 
entanglement in terms of the covariance matrix for 
Gaussian input states. For some values of diffusion and 
dissipation coefficients and environment temperature, the 
state keeps for all times its initial type - separable or 
entangled. In other cases, entanglement generation or 
entanglement suppression (entanglement sudden death) 
take place, or one can even notice a repeated collapse and 
revival of entanglement. The dynamics of the quantum 
entanglement is sensitive to the initial states and the 
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parameters characterizing the environment (diffusion and 
dissipation coefficients and temperature). We have also 
shown that, independent of the type of the initial state, for 
certain values of temperature, the initial state evolves 
asymptotically to an equilibrium state which is entangled, 
while for other values of temperature, the asymptotic state 
is separable. We described also the time evolution of the 
logarithmic negativity, which characterizes the degree of 
entanglement of the quantum state. We determined the 
range of mixed diffusion coefficients as a function of 
temperature for which the entanglement exists in the limit 
of long times. 

Due to the increased interest manifested towards the 
CV approach to quantum information theory, the presented 
results, in particular the possibility of maintaining a 
bipartite entanglement in a diffusive-dissipative 
environment for asymptotic long times, might be useful in 
controlling the entanglement in open systems and also for 
applications in quantum information processing and 
communication. 
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